707 research outputs found

    Dusty shells surrounding the carbon variables S Scuti and RT Capricorni

    Full text link
    For the Mass-loss of Evolved StarS (MESS) programme, the unprecedented spatial resolution of the PACS photometer on board the Herschel space observatory was employed to map the dusty environments of asymptotic giant branch (AGB) and red supergiant (RSG) stars. Among the morphologically heterogeneous sample, a small fraction of targets is enclosed by spherically symmetric detached envelopes. Based on observations in the 70 {\mu}m and 160 {\mu}m wavelength bands, we investigated the surroundings of the two carbon semiregular variables S Sct and RT Cap, which both show evidence for a history of highly variable mass-loss. S Sct exhibits a bright, spherically symmetric detached shell, 138" in diameter and co-spatial with an already known CO structure. Moreover, weak emission is detected at the outskirts, where the morphology seems indicative of a mild shaping by interaction of the wind with the interstellar medium, which is also supported by the stellar space motion. Two shells are found around RT Cap that were not known so far in either dust emission or from molecular line observations. The inner shell with a diameter of 188" shows an almost immaculate spherical symmetry, while the outer ~5' structure is more irregularly shaped. MoD, a modification of the DUSTY radiative transfer code, was used to model the detached shells. Dust temperatures, shell dust masses, and mass-loss rates are derived for both targets

    Herschel/PACS observations of the 69 μm\mu m band of crystalline olivine around evolved stars

    Get PDF
    We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 μ\mum. This wavelength range covers the 69 μ\mum band of crystalline olivine (Mg22xFe(2x)SiO4\text{Mg}_{2-2x}\text{Fe}_{(2x)}\text{SiO}_{4}). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, M˙105\dot M \ge 10^{-5} M_\odot/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 μ\mum band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 μ\mum band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sources in the sample, we detected the 69 μ\mum band of crystalline olivine (Mg(22x)Fe(2x)SiO4\text{Mg}_{(2-2x)}\text{Fe}_{(2x)}\text{SiO}_{4}). The 69 μ\mum band shows that all the sources produce pure forsterite grains containing no iron in their lattice structure. The temperature of the crystalline olivine as indicated by the 69 μ\mum band, shows that on average the temperature of the crystalline olivine is highest in the group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The temperature is lower for the other post-AGB stars and lowest for the planetary nebulae. A couple of the detected 69 μ\mum bands are broader than those of pure magnesium-rich crystalline olivine, which we show can be due to a temperature gradient in the circumstellar environment of these stars. continued...Comment: Accepted for publication in A&

    Desorption of CO and O2 interstellar ice analogs

    Get PDF
    Solid O2 has been proposed as a possible reservoir for oxygen in dense clouds through freeze-out processes. The aim of this work is to characterize quantitatively the physical processes that are involved in the desorption kinetics of CO-O2 ices by interpreting laboratory temperature programmed desorption (TPD) data. This information is used to simulate the behavior of CO-O2 ices under astrophysical conditions. The TPD spectra have been recorded under ultra high vacuum conditions for pure, layered and mixed morphologies for different thicknesses, temperatures and mixing ratios. An empirical kinetic model is used to interpret the results and to provide input parameters for astrophysical models. Binding energies are determined for different ice morphologies. Independent of the ice morphology, the desorption of O2 is found to follow 0th-order kinetics. Binding energies and temperature-dependent sticking probabilities for CO-CO, O2-O2 and CO-O2 are determined. O2 is slightly less volatile than CO, with binding energies of 912+-15 versus 858+-15 K for pure ices. In mixed and layered ices, CO does not co-desorb with O2 but its binding energies are slightly increased compared with pure ice whereas those for O2 are slightly decreased. Lower limits to the sticking probabilities of CO and O2 are 0.9 and 0.85, respectively, at temperatures below 20K. The balance between accretion and desorption is studied for O2 and CO in astrophysically relevant scenarios. Only minor differences are found between the two species, i.e., both desorb between 16 and 18K in typical environments around young stars. Thus, clouds with significant abundances of gaseous CO are unlikely to have large amounts of solid O2.Comment: 8 pages + 2 pages online material, 8 figures (1 online), accepted by A&

    Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars

    Get PDF
    Context. The recent detection of warm H2_2O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2_2O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H2_2O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H2_2O molecules in the intermediate wind. Aims. We aim to determine the properties of H2_2O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H2_2O formation pathway. Methods, Results, and Conclusions. See paper

    An atlas of 2.4 to 4.1 microns ISO/SWS spectra of early-type stars

    Get PDF
    We present an atlas of spectra of O- and B-type stars, obtained with the Short Wavelength Spectrometer (SWS) during the Post-Helium program of the Infrared Space Observatory (ISO). This program is aimed at extending the Morgan & Keenan classification scheme into the near-infrared. Later type stars will be discussed in a seperate publication. The observations consist of 57 SWS Post-Helium spectra from 2.4 to 4.1 microns, supplemented with 10 spectra acquired during the nominal mission with a similar observational setting. For B-type stars, this sample provides ample spectral converage in terms of subtype and luminosity class. For O-type stars,the ISO sample is coarse and therefore is complemented with 8 UKIRT L'-band observations. In terms of the presence of diagnostic lines, the L'-band is likely the most promising of the near-infrared atmospheric windows for the study of the physical properties of B stars. Specifically, this wavelength interval contains the Brackett alpha, Pfund gamma, and other Pfund lines which are probes of spectral type, luminosity class and mass loss. Here, we present simple empirical methods based on the lines present in the 2.4 to 4.1 microns interval that allow the determination of: the spectral type of B dwarfs and giants to within two subtypes; the luminosity class of B stars to within two classes; the mass-loss rate of O stars and B supergiants to within 0.25 dex.Comment: 19 pages, 11 Postscript figures, accepted by A&

    Constraints on the gas content of the Fomalhaut debris belt. Can gas-dust interactions explain the belt's morphology?

    Get PDF
    Context: The 440 Myr old main-sequence A-star Fomalhaut is surrounded by an eccentric debris belt with sharp edges. This sort of a morphology is usually attributed to planetary perturbations, but the orbit of the only planetary candidate detected so far, Fomalhaut b, is too eccentric to efficiently shape the belt. Alternative models that could account for the morphology without invoking a planet are stellar encounters and gas-dust interactions. Aims: We aim to test the possibility of gas-dust interactions as the origin of the observed morphology by putting upper limits on the total gas content of the Fomalhaut belt. Methods: We derive upper limits on the CII 158 μ\mum and OI 63 μ\mum emission by using non-detections from the Photodetector Array Camera and Spectrometer (PACS) onboard the Herschel Space Observatory. Line fluxes are converted into total gas mass using the non-local thermodynamic equilibrium (non-LTE) code RADEX. We consider two different cases for the elemental abundances of the gas: solar abundances and abundances similar to those observed for the gas in the β\beta Pictoris debris disc. Results: The gas mass is shown to be below the millimetre dust mass by a factor of at least \sim3 (for solar abundances) respectively \sim300 (for β\beta Pic-like abundances). Conclusions: The lack of gas co-spatial with the dust implies that gas-dust interactions cannot efficiently shape the Fomalhaut debris belt. The morphology is therefore more likely due to a yet unseen planet (Fomalhaut c) or stellar encounters.Comment: 5 pages, 3 figures, published in A&A; versions 2 and 3: language editin
    corecore